Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Omics‐Based Systems Vaccinology for Vaccine Target Identification

Identifieur interne : 001E54 ( Main/Exploration ); précédent : 001E53; suivant : 001E55

Omics‐Based Systems Vaccinology for Vaccine Target Identification

Auteurs : Yongqun He [États-Unis]

Source :

RBID : ISTEX:DE2BF60AF67D6070F80843FBF3AE831C29CBBEC3

English descriptors

Abstract

Preclinical Research Omics technologies include genomics, transcriptomics, proteomics, metabolomics, and immunomics. These technologies have been used in vaccine research, which can be summarized using the term “vaccinomics.” These omics technologies combined with advanced bioinformatics analysis form the core of “systems vaccinology.” Omics technologies provide powerful methods in vaccine target identification. The genomics‐based reverse vaccinology starts with predicting vaccine protein candidates through in silico bioinformatics analysis of genome sequences. The VIOLIN Vaxign vaccine design program (http://www.violinet.org/vaxign) is the first web‐based vaccine target prediction software based on the reverse vaccinology strategy. Systematic transcriptomics and proteomics analyses facilitate rational vaccine target identification by detesting genome‐wide gene expression profiles. Immunomics is the study of the set of antigens recognized by host immune systems and has also been used for efficient vaccine target prediction. With the large amount of omics data available, it is necessary to integrate various vaccine data using ontologies, including the Gene Ontology (GO) and Vaccine Ontology (VO), for more efficient vaccine target prediction and assessment. All these omics technologies combined with advanced bioinformatics analysis methods for a systems biology‐based vaccine target prediction strategy. This article reviews the various omics technologies and how they can be used in vaccine target identification.

Url:
DOI: 10.1002/ddr.21049


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Omics‐Based Systems Vaccinology for Vaccine Target Identification</title>
<author>
<name sortKey="He, Yongqun" sort="He, Yongqun" uniqKey="He Y" first="Yongqun" last="He">Yongqun He</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:DE2BF60AF67D6070F80843FBF3AE831C29CBBEC3</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1002/ddr.21049</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-6JKLP2GQ-V/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000E73</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000E73</idno>
<idno type="wicri:Area/Istex/Curation">000E73</idno>
<idno type="wicri:Area/Istex/Checkpoint">000564</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000564</idno>
<idno type="wicri:doubleKey">0272-4391:2012:He Y:omics:based:systems</idno>
<idno type="wicri:Area/Main/Merge">001E78</idno>
<idno type="wicri:Area/Main/Curation">001E54</idno>
<idno type="wicri:Area/Main/Exploration">001E54</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Omics‐Based Systems Vaccinology for Vaccine Target Identification</title>
<author>
<name sortKey="He, Yongqun" sort="He, Yongqun" uniqKey="He Y" first="Yongqun" last="He">Yongqun He</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, Center for Computational Medicine and Bioinformatics, Comprehensive Cancer Center, University of Michigan Medical School, 018 Animal Research Facility, 1150 W. Medical Dr., MI, 48109, Ann Arbor</wicri:regionArea>
<wicri:noRegion>Ann Arbor</wicri:noRegion>
</affiliation>
<affiliation></affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Drug Development Research</title>
<title level="j" type="sub">Impact of Omics on Drug Discovery and Development. Part II</title>
<title level="j" type="alt">DRUG DEVELOPMENT RESEARCH</title>
<idno type="ISSN">0272-4391</idno>
<idno type="eISSN">1098-2299</idno>
<imprint>
<biblScope unit="vol">73</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="559">559</biblScope>
<biblScope unit="page" to="568">568</biblScope>
<biblScope unit="page-count">10</biblScope>
<date type="published" when="2012-12">2012-12</date>
</imprint>
<idno type="ISSN">0272-4391</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0272-4391</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Acad</term>
<term>Analysis system</term>
<term>Animal research facility</term>
<term>Article reviews</term>
<term>Aspergillus fumigatus</term>
<term>Autoimmune diseases</term>
<term>Bacillus anthracis</term>
<term>Bioinformatics</term>
<term>Bioinformatics analysis</term>
<term>Biomed biotechnol</term>
<term>Biomedical ontology</term>
<term>Bordetella pertussis</term>
<term>Brucella</term>
<term>Candida albicans</term>
<term>Chlamydia pneumoniae</term>
<term>Coli</term>
<term>Comparative genomics</term>
<term>Comparative proteomic analysis</term>
<term>Complete genome sequence</term>
<term>Comprehensive cancer center</term>
<term>Computational medicine</term>
<term>Data analysis</term>
<term>Database</term>
<term>Epitope</term>
<term>Escherichia</term>
<term>Escherichia coli</term>
<term>Falciparum</term>
<term>Gene</term>
<term>Gene expression</term>
<term>Gene ontology</term>
<term>Genome</term>
<term>Genome sequence</term>
<term>Genome sequences</term>
<term>Genomics</term>
<term>Human herpesvirus</term>
<term>Human infection</term>
<term>Immun</term>
<term>Immune</term>
<term>Immune epitopes</term>
<term>Immune response</term>
<term>Immune responses</term>
<term>Immunodominant antigens</term>
<term>Immunogenic proteins</term>
<term>Immunoproteomic analysis</term>
<term>Infectious diseases</term>
<term>Intelligent systems</term>
<term>Laboratory animal medicine</term>
<term>Large amounts</term>
<term>Legionella pneumophila</term>
<term>Literature mining</term>
<term>Many examples</term>
<term>Meningitidis</term>
<term>Microarray</term>
<term>Microarrays</term>
<term>Microbiol</term>
<term>Molecular biology</term>
<term>Mycobacterium tuberculosis</term>
<term>Natl</term>
<term>Neisseria</term>
<term>Neisseria meningitidis</term>
<term>Neisseria meningitidis serogroup</term>
<term>Nucleic acids</term>
<term>Omics</term>
<term>Omics data</term>
<term>Omics technologies</term>
<term>Ontology</term>
<term>Other omics technologies</term>
<term>Outer membrane proteins</term>
<term>Pathogen</term>
<term>Pathogen genomes</term>
<term>Plasmodium falciparum</term>
<term>Pneumoniae</term>
<term>Potential vaccine candidates</term>
<term>Proc</term>
<term>Proc natl acad</term>
<term>Protective antigens</term>
<term>Protective protein antigens</term>
<term>Protein microarrays</term>
<term>Proteome</term>
<term>Proteomic</term>
<term>Proteomic analysis</term>
<term>Proteomics</term>
<term>Pubmed literature</term>
<term>Respiratory syncytial virus</term>
<term>Semantic applications</term>
<term>Serological proteome analysis</term>
<term>Sexual stages</term>
<term>Silico</term>
<term>Staphylococcus</term>
<term>Staphylococcus aureus</term>
<term>Staphylococcus epidermidis</term>
<term>Streptococcus</term>
<term>Streptococcus agalactiae</term>
<term>Streptococcus pneumoniae</term>
<term>Streptococcus pyogenes</term>
<term>Streptococcus sanguinis</term>
<term>Streptococcus suis</term>
<term>Subunit vaccine</term>
<term>Surface proteins</term>
<term>Systems biology</term>
<term>Systems vaccinology</term>
<term>Uropathogenic escherichia coli</term>
<term>Vaccine</term>
<term>Vaccine candidate antigens</term>
<term>Vaccine candidates</term>
<term>Vaccine design</term>
<term>Vaccine design program</term>
<term>Vaccine development</term>
<term>Vaccine immunization</term>
<term>Vaccine ontology</term>
<term>Vaccine protein candidates</term>
<term>Vaccine research</term>
<term>Vaccine target</term>
<term>Vaccine target identification</term>
<term>Vaccine target prediction</term>
<term>Vaccine targets</term>
<term>Vaccinology</term>
<term>Vaccinology strategy</term>
<term>Vaxign</term>
<term>Vaxign pipeline</term>
<term>Vibrio cholerae</term>
<term>Wang</term>
<term>West nile virus</term>
<term>Wiley periodicals</term>
<term>Xiang</term>
<term>Yellow fever vaccine</term>
<term>Zhang</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Preclinical Research Omics technologies include genomics, transcriptomics, proteomics, metabolomics, and immunomics. These technologies have been used in vaccine research, which can be summarized using the term “vaccinomics.” These omics technologies combined with advanced bioinformatics analysis form the core of “systems vaccinology.” Omics technologies provide powerful methods in vaccine target identification. The genomics‐based reverse vaccinology starts with predicting vaccine protein candidates through in silico bioinformatics analysis of genome sequences. The VIOLIN Vaxign vaccine design program (http://www.violinet.org/vaxign) is the first web‐based vaccine target prediction software based on the reverse vaccinology strategy. Systematic transcriptomics and proteomics analyses facilitate rational vaccine target identification by detesting genome‐wide gene expression profiles. Immunomics is the study of the set of antigens recognized by host immune systems and has also been used for efficient vaccine target prediction. With the large amount of omics data available, it is necessary to integrate various vaccine data using ontologies, including the Gene Ontology (GO) and Vaccine Ontology (VO), for more efficient vaccine target prediction and assessment. All these omics technologies combined with advanced bioinformatics analysis methods for a systems biology‐based vaccine target prediction strategy. This article reviews the various omics technologies and how they can be used in vaccine target identification.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="He, Yongqun" sort="He, Yongqun" uniqKey="He Y" first="Yongqun" last="He">Yongqun He</name>
</noRegion>
<name sortKey="He, Yongqun" sort="He, Yongqun" uniqKey="He Y" first="Yongqun" last="He">Yongqun He</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E54 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001E54 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:DE2BF60AF67D6070F80843FBF3AE831C29CBBEC3
   |texte=   Omics‐Based Systems Vaccinology for Vaccine Target Identification
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021